# CHECKING THE GOLDBACH CONJECTURE UP TO $4 \cdot 10^{11}$ 

MATTI K. SINISALO


#### Abstract

One of the most studied problems in additive number theory, Goldbach's conjecture, states that every even integer greater than or equal to 4 can be expressed as a sum of two primes. In this paper checking of this conjecture up to $4 \cdot 10^{11}$ by the IBM 3083 mainframe with vector processor is reported.


## 1. Introduction

The Goldbach conjecture states that every even integer greater than or equal to 4 can be expressed as a sum of two primes. This problem appeared for the first time in a letter from Goldbach to Euler in the year 1742.

A direct consequence of the Goldbach conjecture would be that every odd integer greater than or equal to 7 can be expressed as a sum of three primes.

It should be noted, that Goldbach treated the number 1 as a prime. Here we consider the number 2 as the first prime.

Mok Kong Shen [1] reported in 1964 about checking the Goldbach conjecture up to $33,000,000$. Stein and Stein [2] checked the conjecture up to $10^{8}$ in 1965 and Light, Forrest, Hammond, and Roe [4] in 1980 up to the same bound, independently. To the best of our knowledge the latest published result is due to Granville, van de Lune, and te Riele [5], who checked the conjecture up to $2 \cdot 10^{10}$ in 1989.

As in [5], we will use the following terminology. By minimal Goldbach partition for an even integer $n$ we mean the representation $n=p+q$, where $p$ and $q$ are primes and $p$ is such that $n-p^{\prime}$ is composite for every prime $p^{\prime}<p$. The smallest prime in the minimal Goldbach partition of $n$ is denoted by $p(n)$. For every prime $q$ we denote by $S(q)$ the least even number $n$ such that $p(n)=q$.

## 2. On the computational process

The basic method used in our computations was Eratosthenes' sieve method. No primality test was needed in the actual computational process.

The details of the method have been presented in [5]. This paper also includes some valuable statistics concerning the subject. The published values in [5] agree with our results.

At the first step a bit matrix representing the prime numbers up to 1048576 ( $=2^{20}$ ) was made by using Eratosthenes' sieve method. A 32-bit integer

Received by the editor September 10, 1991 and, in revised form, August 5, 1992.
1991 Mathematics Subject Classification. Primary 11P32.
Key words and phrases. Goldbach conjecture, Eratosthenes sieve method.
array of 32768 elements $(=1048576 / 32)$ was needed for this. Every integer $[1,1048576]$ was represented by one bit in this table. These primes were stored into another integer table. This table can be used to make prime number tables on intervals up to $2^{40}\left(\approx 1.0995 \cdot 10^{12}\right)$, using Eratosthenes' sieve method.

The basic step size was chosen as $2 \cdot 2 \cdot 3 \cdot 7 \cdot 11 \cdot 13 \cdot 17=1021020$. Hence, an interval of more than one million numbers was checked at a time. This selection made the program run faster since we did not need to use the small primes from 2 to 17 in the sieving process. The divisibility by the primes from 19 up to the square root of the last integer of the interval had to be checked by sieving.

The addition of small primes was replaced by shifting of the bit matrix as a whole by the number of bits corresponding to these prime values. The shifted bit matrices were joined together using the logical OR operation. The remaining zeros were handled separately.

The programs were written in VS FORTRAN and interpreted by the IBM FORTVS2 vectorizing interpreter. The logical (IAND, IOR) and shifting operations (ISHFT) available in FORTRAN were used whenever it was possible. The main parts of the program vectorized quite effectively.

Table 1

| $n$ | $p(n)$ | $q_{1}$ | $q_{2}$ | $n$ | $p(n)$ | $q_{1}$ | $q_{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 3 | 1.485 | 1.602 | $3,526,958$ | 727 | 0.347 | 1.179 |
| 12 | 5 | 0.959 | 0.890 | $3,807,404$ | 751 | 0.346 | 1.203 |
| 30 | 7 | 0.898 | 0.494 | $10,759,922$ | 829 | 0.359 | 1.136 |
| 98 | 19 | 0.529 | 0.594 | $24,106,882$ | 929 | 0.364 | 1.135 |
| 220 | 23 | 0.549 | 0.469 | $27,789,878$ | 997 | 0.360 | 1.194 |
| 308 | 31 | 0.486 | 0.541 | $37,998,938$ | 1039 | 0.362 | 1.193 |
| 556 | 47 | 0.426 | 0.638 | $60,119,912$ | 1093 | 0.366 | 1.181 |
| 992 | 73 | 0.375 | 0.794 | $113,632,822$ | 1163 | 0.372 | 1.158 |
| 2,642 | 103 | 0.367 | 0.804 | $187,852,862$ | 1321 | 0.369 | 1.235 |
| 5,372 | 139 | 0.353 | 0.876 | $335,070,838$ | 1427 | 0.372 | 1.244 |
| 7,426 | 173 | 0.336 | 0.996 | $419,911,924$ | 1583 | 0.366 | 1.344 |
| 43,532 | 211 | 0.373 | 0.781 | $721,013,438$ | 1789 | 0.364 | 1.426 |
| 54,244 | 233 | 0.367 | 0.821 | $1,847,133,842$ | 1861 | 0.376 | 1.336 |
| 63,274 | 293 | 0.343 | 0.998 | $7,473,202,036$ | 1877 | 0.400 | 1.163 |
| 113,672 | 313 | 0.353 | 0.941 | $11,001,080,372$ | 1879 | 0.407 | 1.119 |
| 128,168 | 331 | 0.349 | 0.971 | $12,703,943,222$ | 2029 | 0.401 | 1.191 |
| 194,428 | 359 | 0.352 | 0.968 | $21,248,558,888$ | 2089 | 0.407 | 1.166 |
| 194,470 | 383 | 0.344 | 1.033 | $35,884,080,836$ | 2803 | 0.386 | 1.487 |
| 413,572 | 389 | 0.364 | 0.909 | $105,963,812,462$ | 3061 | 0.394 | 1.469 |
| 503,222 | 523 | 0.335 | 1.178 | $244,885,595,672$ | 3163 | 0.404 | 1.408 |
| $1,077,422$ | 601 | 0.339 | 1.184 |  |  |  |  |
| 1 |  |  |  |  |  |  |  |

## 3. The results

In Table 1 we list the champions for the $p(n)$ function: values of $n$ such that $p(m)<p(n)$ for all even integers $m<n$. This table is an extension of Table 3 in [3] (up to $n=40 \cdot 10^{6}$ ) and of Table 3 in [5] (by four new entries). As in [5], we list the quotient $q_{1}=\log (n) /(\log p(n))^{2}$ and also the quotient $q_{2}=p(n) /\left((\log n)^{2} \log \log n\right)$. It was conjectured on probabilistic grounds in [5] that the latter quotient would be bounded above and for all $n \geq 10$, that is, we should have $p(n) \ll(\log n)^{2} \log \log n$.

Table 1 implies that for all even $n \leq 4 \cdot 10^{11}$ we have $p(n) \leq 3163$.
Table 2 presents a list of champions for the function $S(p)$, that is, primes $p$ such that $S(q)<S(p)$ for all primes $q<p$.

Table 2

| $p$ | $S(p)$ | $p$ | $S(p)$ | $p$ | $S(p)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 6 | 347 | $1,042,078$ | 1,091 | $678,546,502$ |
| 5 | 12 | 379 | $1,172,918$ | 1,097 | $1,168,888,534$ |
| 7 | 30 | 401 | $2,041,402$ | 1,283 | $1,673,268,292$ |
| 11 | 124 | 419 | $2,406,448$ | 1,301 | $1,927,528,888$ |
| 17 | 418 | 463 | $4,288,574$ | 1,327 | $2,331,465,314$ |
| 37 | 1,274 | 487 | $4,938,848$ | 1,429 | $2,538,833,642$ |
| 53 | 2,512 | 509 | $9,292,156$ | 1,439 | $2,816,593,312$ |
| 59 | 3,526 | 521 | $14,341,888$ | 1,451 | $4,407,165,118$ |
| 71 | 4,618 | 569 | $17,726,098$ | 1,493 | $5,801,828,806$ |
| 83 | 7,432 | 593 | $20,757,292$ | 1,559 | $8,946,630,856$ |
| 89 | 12,778 | 659 | $32,507,242$ | 1,571 | $21,439,965,412$ |
| 101 | 26,098 | 739 | $34,362,758$ | 1,787 | $26,070,202,114$ |
| 131 | 34,192 | 743 | $37,890,844$ | 1,811 | $30,325,742,068$ |
| 149 | 37,768 | 761 | $49,358,128$ | 1,867 | $30,834,371,756$ |
| 167 | 59,914 | 773 | $68,788,066$ | 1,873 | $32,652,627,542$ |
| 179 | 88,786 | 839 | $129,796,642$ | 1,889 | $44,460,316,708$ |
| 191 | 97,768 | 853 | $144,516,902$ | 1,907 | $64,243,962,808$ |
| 197 | 112,558 | 911 | $150,386,932$ | 1,997 | $65,334,725,368$ |
| 223 | 221,942 | 941 | $206,892,484$ | 2,027 | $113,843,130,358$ |
| 257 | 237,544 | 977 | $247,013,164$ | 2,153 | $244,808,993,116$ |
| 263 | 485,326 | 1,031 | $299,434,108$ | 2,351 | $384,619,217,512$ |
| 281 | 642,358 | 1,049 | $379,410,652$ | 2,441 | $>400,000,000,000$ |
| 317 | 686,638 | 1,061 | $554,463,808$ |  |  |

## 4. Remarks

Vinogradov showed in 1937 that every odd integer which is large enough can be expressed as a sum of three primes. Several authors have since then improved the lower bound in this statement and it has been shown to be true for every odd integer $n$ greater than $\exp (\exp (11.503)) \approx 10^{43000}$ [6].

On the other hand, let $n$ be an odd integer. If there is a prime $p_{1}$ on the interval ( $n-4 \cdot 10^{11}, n-2$ ), then $n-p_{1}$ is even and it can be expressed as a sum of two primes, say $n-p_{1}=p_{2}+p_{3}$. Thus $n=p_{1}+p_{2}+p_{3}$. Hence, the Vinogradov statement has been checked up to the first prime number gap (the difference between two consecutive primes) of $4 \cdot 10^{11}$ integers.

Large prime number gaps seem to be quite rare. Young and Potler [7] have investigated prime number gaps up to $7.263 \cdot 10^{13}$. The largest gap found by them was 778 . It may be that there is no prime number gap of length $4 \cdot 10^{11}$ or larger below $\exp (\exp (11.503))$.

## 5. CPU-time

Verification of the Goldbach conjecture required about 130 hours of cpu-time on the IBM 3083 mainframe. In total, about 170 hours of computing time was used on this project.

## 6. Acknowledgments

I would like to express my gratitude to Dr. Tapani Matala-aho and Professor Keijo Väänänen for valuable advice during this work, to Professor te Riele for informing me about the earlier work [5], and to the referee of this paper for proposing some improvements to the manuscript.

## Bibliography

1. Mok Kong Shen, On checking the Goldbach conjecture, BIT 4 (1964), 243-245.
2. M. L. Stein and P. R. Stein, Experimental results on additive 2-bases, Math. Comp. 19 (1965), 427-434.
3. Jan Bohman and Carl-Erik Fröberg, Numerical results on the Goldbach conjecture, BIT 15 (1975), 239-243.
4. W. A. Light, J. Forrest, N. Hammond, and S. Roe, A note on Goldbach's conjecture, BIT 79 (1980), 525.
5. A. Granville, J. van de Lune, and H. J. J. te Riele, Checking the Goldbach conjecture on a vector computer, Number Theory and Applications (R. A. Mollin, ed.), Kluwer, Dordrecht, 1989, pp. 423-433.
6. Jingrun Chen and Tianze Wang, On the odd Goldbach problem, Acta Math. Sinica 32 (1989), 702-718. (Chinese)
7. Jeff Young and Aaron Potler, First occurrence prime gaps, Math. Comp. 52 (1989), 221-224.

Department of Mathematics, University of Oulu, 90570 Oulu, Finland
E-mail address: mat-mks@finou.oulu.fi

